Delayed Quotes
Delayed quotes are market prices that are provided with a time lag, often 10 to 20 minutes. They are commonly used for retail data access when real time data requires a subscription.
Implications for Trading
Using delayed quotes for active trading is risky because prices can change rapidly. Orders based on delayed data can result in unexpected fills or missed opportunities.
Typical Sources
Many public finance sites display delayed quotes. Some brokers provide delayed data by default for accounts without real time subscriptions.
Risks for Active Traders
- Slippage due to stale prices
- Misreading of intraday trends
- Inability to monitor fast market moves
- Incorrect stop placement based on outdated levels
Use Cases
Delayed quotes are more appropriate for educational use, long term investing, or markets where latency is less critical. They can still be useful for general market awareness.
Best Practices
Always verify whether your data feed is real time or delayed. If you are trading actively, real time data is essential. For research, ensure that timestamped data aligns with execution assumptions.
Operational Notes
Some venues have different definitions of delay length. Confirm the exact delay in your data feed documentation to avoid hidden latency.
Operational Notes
Definitions and conventions should be consistent across datasets and venues. A small difference in data fields or session boundaries can change outcomes, especially for short term strategies. Document inputs and assumptions so results can be reproduced.
If the concept depends on exchange rules or broker behavior, confirm those rules for the specific venue. Operational details often explain why a trade behaved differently than expected.
Stress Scenarios
During volatility spikes, liquidity can evaporate and price gaps can appear. Under these conditions, indicators can lag, order types can misfire, and spreads can widen sharply.
Stress testing the concept against fast markets, thin liquidity, and sudden news helps reveal hidden risks. If a strategy only works in calm conditions, size and timing should reflect that.
Documentation Tips
Keep a short checklist of the rules, parameters, and decision points. Record how the concept is used in live trading and compare it to backtest assumptions. This makes future refinement easier and reduces drift in execution.
Common Questions
Traders often ask how sensitive results are to parameter choices, how the concept behaves in different regimes, and whether it scales with size. Answering these questions early improves reliability and prevents overfitting.
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime