Directional Trading
Directional trading involves taking positions that profit from a move in a specific direction. It can be based on trend following, mean reversion, or event driven analysis.
Common Approaches
- Trend following using moving averages or breakouts
- Momentum strategies based on price acceleration
- Event driven trades tied to earnings or macro releases
Risk Management
Directional strategies can experience large drawdowns if the market moves against the position. Stops, position sizing, and diversification are critical.
Performance Drivers
The edge comes from correctly identifying direction and timing. Costs and slippage can erode returns, especially for short term strategies.
Regime Dependence
Directional strategies often perform best in trending markets and struggle in range bound conditions. Regime filters can improve consistency.
Practical Notes
Define clear entry and exit rules and track adherence. Deviations from the plan are a common source of losses in directional trading.
Operational Notes
Definitions and conventions should be consistent across datasets and venues. A small difference in data fields or session boundaries can change outcomes, especially for short term strategies. Document inputs and assumptions so results can be reproduced.
If the concept depends on exchange rules or broker behavior, confirm those rules for the specific venue. Operational details often explain why a trade behaved differently than expected.
Stress Scenarios
During volatility spikes, liquidity can evaporate and price gaps can appear. Under these conditions, indicators can lag, order types can misfire, and spreads can widen sharply.
Stress testing the concept against fast markets, thin liquidity, and sudden news helps reveal hidden risks. If a strategy only works in calm conditions, size and timing should reflect that.
Documentation Tips
Keep a short checklist of the rules, parameters, and decision points. Record how the concept is used in live trading and compare it to backtest assumptions. This makes future refinement easier and reduces drift in execution.
Common Questions
Traders often ask how sensitive results are to parameter choices, how the concept behaves in different regimes, and whether it scales with size. Answering these questions early improves reliability and prevents overfitting.
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime
Checklist
- Define the exact rule in plain language
- Validate data quality and timing
- Quantify execution costs
- Set risk limits and stop logic
- Review performance by regime